Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Ranking algorithms in online platforms serve not only users on the demand side, but also items on the supply side. While ranking has traditionally presented items in an order that maximizes their utility to users, the uneven interactions that different items receive as a result of such a ranking can pose item fairness concerns. Moreover, interaction is affected by various forms of bias, two of which have received considerable attention: position bias and selection bias. Position bias occurs due to lower likelihood of observation for items in lower ranked positions. Selection bias occurs because interaction is not possible with items below an arbitrary cutoff position chosen by the front-end application at deployment time (i.e., showing only the top-kitems). A less studied, third form of bias, trust bias, is equally important, as it makes interaction dependent on rank even after observation, by influencing the item’s perceived relevance. To capture interaction disparity in the presence of all three biases, in this paper we introduce a flexible fairness metric. Using this metric, we develop a post-processing algorithm that optimizes fairness in ranking through greedy exploration and allows a tradeoff between fairness and utility. Our algorithm outperforms state-of-the-art fair ranking algorithms on several datasets.more » « less
- 
            null (Ed.)People come in different shapes and sizes, but most will perform similarly well if asked to complete a task requiring fine manual dexterity – such as holding a pen or picking up a single grape. How can different individuals, with different sized hands and muscles, produce such similar movements? One explanation is that an individual’s brain and nervous system become precisely tuned to mechanics of the body’s muscles and skeleton. An alternative explanation is that brain and nervous system use a more “robust” control policy that can compensate for differences in the body by relying on feedback from the senses to guide the movements. To distinguish between these two explanations, Uyanik et al. turned to weakly electric freshwater fish known as glass knifefish. These fish seek refuge within root systems, reed grass and among other objects in the water. They swim backwards and forwards to stay hidden despite constantly changing currents. Each fish shuttles back and forth by moving a long ribbon-like fin on the underside of its body. Uyanik et al. measured the movements of the ribbon fin under controlled conditions in the laboratory, and then used the data to create computer models of the brain and body of each fish. The models of each fish’s brain and body were quite different. To study how the brain interacts with the body, Uyanik et al. then conducted experiments reminiscent of those described in the story of Frankenstein and transplanted the brain from each computer model into the body of different model fish. These “brain swaps” had almost no effect on the model’s simulated swimming behavior. Instead, these “Frankenfish” used sensory feedback to compensate for any mismatch between their brain and body. This suggests that, for some behaviors, an animal’s brain does not need to be precisely tuned to the specific characteristics of its body. Instead, robust control of movement relies on many seemingly redundant systems that provide sensory feedback. This has implications for the field of robotics. It further suggests that when designing robots, engineers should prioritize enabling the robots to use sensory feedback to cope with unexpected events, a well-known idea in control engineering.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
